

A067628


Minimal perimeter of polyiamond with n triangles.


8



0, 3, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 9, 10, 11, 10, 11, 12, 11, 12, 13, 12, 13, 12, 13, 14, 13, 14, 15, 14, 15, 14, 15, 16, 15, 16, 15, 16, 17, 16, 17, 16, 17, 18, 17, 18, 17, 18, 19, 18, 19, 18, 19, 18, 19, 20, 19, 20, 19, 20, 21, 20, 21, 20, 21, 20, 21, 22, 21, 22, 21, 22
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

A polyiamond is a shape made up of n congruent equilateral triangles.


REFERENCES

Frank Harary and Heiko Harborth, Extremal animals, J. Combinatorics Information Syst. Sci., 1(1):18, 1976.


LINKS

Stefano Spezia, Table of n, a(n) for n = 0..10000
Greg Malen and Érika Roldán, Polyiamonds Attaining Extremal Topological Properties, arXiv:1906.08447 [math.CO], 2019.
J. Yackel, R. R. Meyer, I. Christou, Minimumperimeter domain assignment, Mathematical Programming, vol. 78 (1997), pp. 283303.
W. C. Yang and R. R. Meyer, Maximal and minimal polyiamonds, 2002.


FORMULA

Let c(n) = ceiling(sqrt(6n)). Then a(n) is whichever of c(n) or c(n) + 1 has the same parity as n.
a(n) = 2*ceiling((n + sqrt(6*n))/2)  n (Harary and Harborth, 1976).  Stefano Spezia, Oct 02 2019


MAPLE

interface(quiet=true); for n from 0 to 100 do if (1 = 1) then temp1 := ceil(sqrt(6*n)); end if; if ((temp1 mod 2) = (n mod 2)) then temp2 := 0; else temp2 := 1; end if; printf("%d, ", temp1 + temp2); od;


PROG

(PARI) a(n)=2*ceil((n+sqrt(6*n))/2)n; \\ Stefano Spezia, Oct 02 2019


CROSSREFS

Cf. A000105, A000577, A027709 (squares), A057729, A065777 (cubes), A135711.
Sequence in context: A126800 A245689 A182258 * A168093 A095254 A262980
Adjacent sequences: A067625 A067626 A067627 * A067629 A067630 A067631


KEYWORD

nonn


AUTHOR

Winston C. Yang (winston(AT)cs.wisc.edu), Feb 02 2002


STATUS

approved



